ВОЗДУХОПЛАВАНИЕ
Форма входа
Категории раздела
Термины и определения [29]
Прогноз погоды [26]
Конструкция и ТХ аэростатов [15]
Статистика

Онлайн всего: 1
Гостей: 1
Воздухоплавателей: 0
Суббота, 20.04.2024, 14:55
Приветствую Вас Автопилот

Каталог статей

Главная » Статьи » Учимся летать на Тепловом аэростате. » Термины и определения

СЖИМАЕМЫЕ ТЕЧЕНИЯ

СЖИМАЕМЫЕ ТЕЧЕНИЯ

Если скорость движения тела (или воздуха относительно неподвижного тела) становится сравнимой со скоростью звука, то плотность воздуха в течении изменяется, и в коэффициентах аэродинамических сил проявляется влияние сжимаемости. Это влияние можно охарактеризовать с помощью числа Маха.

Рассмотрим сначала тонкое тело с заостренным носком, такое, как игла или лезвие бритвы, при нулевом угле атаки. Создаваемые носком такого тела возмущения давления малы, и эти возмущения распространяются во все стороны от носка со скоростью звука a, равной 340 м/с при стандартной температуре 288 К (15° С). Рассмотрим два режима полета и две волновые диаграммы, иллюстрирующие распространение возмущений (волн) давления. Диаграмма рис. 10,а соответствует дозвуковому полету (с M < 1), а рис. 10,б – сверхзвуковому полету (с M > 1). Тело, движущееся со скоростью v, проходит расстояние AB за время t, так что AB = vt. За это же время волна проходит расстояние at и уходит вперед относительно тела в случае дозвукового полета. При сверхзвуковом полете волна отстает от тела, и ее фронт, касательный к окружностям распространения возмущений, образует угол b с направлением движения тела. Так как угол ACB прямой, то

Можно видеть, что все возмущения давления образуют волновой фронт, наклоненный под углом b, который тем меньше, чем больше число Маха. Волны, генерируемые заостренными тонкими телами, называются волнами Маха, в отличие от ударных волн, рассматриваемых ниже, и угол b называется углом Маха.

 Рис. 10. ВОЛНОВЫЕ СТРУКТУРЫ, генерируемые тонким заостренным телом, перемещающимся из точки A в точку B с дозвуковой (а) или сверхзвуковой (б) скоростью. При дозвуковой скорости полета возмущения давления, распространяющиеся со скоростью звука в виде круговых волн, движутся перед телом. При сверхзвуковой скорости полета тело движется быстрее, чем волны. Фронты волны изображаются линиями BC и BD, касательными к круговым волнам.

Существуют волны давления двух типов: волны сжатия и волны разрежения. При переходе через волну сжатия происходит сжатие воздуха, и, следовательно, его плотность и давление увеличиваются. Обратная картина наблюдается в волне разрежения, при прохождении через которую имеет место разрежение воздуха, приводящее к уменьшению плотности и давления.

Математический анализ уравнений течения показывает, что если образуется некоторая совокупность следующих друг за другом волн сжатия, то происходит усиление головной волны, так как последующие волны догоняют ее и сливаются с ней. Образующаяся при этом интенсивная волна называется ударной, и ее свойства отличаются от свойств более слабых волн Маха. Так, последовательность волн разрежения не улавливается головной волной, и, следовательно, ударная волна всегда является волной сжатия. Напомним, что до сих пор рассматривалось тонкое заостренное тело; затупленное тело большой толщины при сверхзвуковой скорости движения порождает сильные возмущения, т.е. ударные волны, а не волны Маха.

Ударная волна движется со скоростью, превышающей скорость звука, и чем больше интенсивность волны (т.е. чем больше изменения плотности и давления в ней), тем быстрее она движется. (Например, ударная волна, возникающая при взрыве атомной бомбы, в начале своего пути перемещается со скоростью, составляющей несколько миллионов километров в час.) Угол между фронтом ударной волны и направлением течения больше угла Маха, так как скорость перемещения этой волны больше скорости звука a. Следующий пример дает количественное представление об образовании ударных волн и волн Маха. При M = 2 волна, генерируемая телом клиновидной формы (рис. 11), имеет характеристики, сходные с характеристиками волн Маха, если угол при вершине клина меньше 8°. Если этот угол больше 8°, то образуется ударная волна. На рис. 11 также приведено распределение давления на поверхности клина. При переходе через ударную волну в вершине клина давление скачкообразно увеличивается и остается постоянным до встречи с веером волн разрежения, порождаемым обтеканием угла B. Затем оно снова принимает постоянное значение, сохраняющееся до тех пор, пока не достигается ударная волна, исходящая из точки C. Линия тока abcdef состоит из прямолинейных участков, концы которых соответствуют пересечениям с волнами, генерируемыми изломами поверхности тела. Форма этой линии тока сильно отличается от формы соответствующей линии в дозвуковом течении (рис. 8), в котором линии тока начинают искривляться еще перед телом и остаются гладкими при изменении своей формы, вызванном присутствием тела.

 Рис. 11. КЛИНОВИДНОЕ КРЫЛО в сверхзвуковом потоке (а) и давления на участках AB и BC крыла (б).

Система волн, изображенная на рис. 11, кардинально изменяется, если угол при вершине клина превышает критическое значение, величина которого возрастает с числом Маха. При этом ударная волна, генерируемая носком тела, искривляется и отходит от тела вперед. Возникает отсоединенная ударная волна. Например, если при M = 2 угол клина больше 23°, то ударная волна будет отсоединенной. При угле клина, равном 23°, образуется присоединенная ударная волна, если M > 2, и отсоединенная, если M < 2. При M = 5 критический угол увеличивается до 41°. Аналогичные явления имеют место при обтекании тел с коническими носовыми частями, однако для конуса критический угол при фиксированном числе Маха больше, чем для клина. Например, при M = 2 критический угол конуса составляет 40°, тогда как для клина он равен 23°. На рис. 12 приведен фотоснимок, иллюстрирующий сверхзвуковое течение с отсоединенной ударной волной около затупленного тела и присоединенной – около тонкого конуса.

 Naval Surface Warfare Center Рис. 12. УДАРНЫЕ ВОЛНЫ, создаваемые затупленным и тонким телами в потоке с М = 10 в аэродинамической трубе. В этом исследовании, моделирующем вход ракеты в плотные слои атмосферы, фотографические изображения картин обтекания были получены с помощью теневого метода (прибора Теплера).

Непосредственно за передней частью отсоединенной ударной волны всегда возникает область дозвукового течения. Здесь сверхзвуковой поток встречается с прямым скачком уплотнения, при переходе через который он преобразуется в дозвуковое течение. Если скачок уплотнения наклонен относительно направления течения, то при прохождении через косой скачок течение остается сверхзвуковым, однако число Маха за скачком уменьшается. Прямые скачки уплотнения часто возникают в сверхзвуковых течениях в трубах или при истечении сверхзвуковой струи в атмосферу.

Течения в трубах.

Сверхзвуковое течение в трубе можно создать только в том случае, если в трубе имеется поджатие или горловина (рис. 13). Если отношение давлений p0/pв достаточно велико, то в горловине с площадью поперечного сечения Aкр достигается скорость звука, а в последующей части трубы скорость течения становится сверхзвуковой. Число Маха течения на выходе Мв определяется отношением площадей Ав/Акр. Приведенная ниже таблица иллюстрирует эту зависимость.

Если относительное давление р0/рв меньше значения, приведенного в таблице, то в расширяющейся части трубы возникает прямой скачок уплотнения, за которым течение снова становится дозвуковым.

 Рис. 13. СВЕРХЗВУКОВОЕ ТЕЧЕНИЕ в трубе можно создать, если в трубе имеется поджатие или горловина. Воздух вытекает из резервуара высокого давления, и если отношение давлений внутри и вне резервуара достаточно велико, то в выходном сечении течение будет сверхзвуковым.

Влияние сжимаемости.

Теперь можно приступить к рассмотрению аэродинамических характеристик крыльев и других тел во всем используемом на практике диапазоне скоростей и высот полета, в котором необходимо учитывать влияние сжимаемости. Весь интервал скоростей полета самолета можно разбить на следующие диапазоны: дозвуковой, трансзвуковой, сверхзвуковой и гиперзвуковой. Это деление нельзя однозначно определить в терминах числа Маха безотносительно к форме тела и углу атаки. Тем не менее в каждом диапазоне течение обладает специфическими особенностями, которые отличают данный диапазон от остальных.

Аэродинамическое сопротивление, обусловленное влиянием сжимаемости, называется волновым. Ударные волны, образующиеся при движении тела, сообщают течению некоторую энергию. Эта энергия препятствует перемещению тела. Другими словами, когда образуется ударная волна, возникает волновое сопротивление, и требуется дополнительная сила для его преодоления. Следовательно, полная сила сопротивления, действующая на тело в сверхзвуковом течении, складывается из вязкого сопротивления (состоящего из сопротивления трения и сопротивления формы), индуктивного, рассмотренного выше, и волнового сопротивлений.

Диапазон несжимаемых течений, рассмотренных выше, соответствует М < 0,4. В этом диапазоне единственным существенным параметром, влияющим на коэффициенты подъемной силы и силы сопротивления, является число Рейнольдса.

В диапазоне дозвуковых скоростей, которому соответствуют числа Маха от 0,4 до 0,7, впервые начинает проявляться влияние сжимаемости. Это влияние сказывается главным образом на величине коэффициента пропорциональности k между коэффициентом подъемной силы CY и углом атаки крыла a. В случае крыла большого удлинения в потоке с 0,4 Ј M Ј 0,7 этот эффект описывается соотношением

где k1 – значение параметра k для несжимаемого течения. Например, при M = 0,6 коэффициент пропорциональности на 25% больше, чем в несжимаемом течении. В этом диапазоне чисел Маха волновое сопротивление отсутствует, так как течение всюду дозвуковое и скачки уплотнения не образуются.

Диапазон трансзвуковых скоростей, который иногда называется диапазоном «смешанного течения», начинается с числа Маха, при котором в некоторой точке на поверхности скорость течения становится звуковой, и распространяется до значения числа Маха, при котором течение становится сверхзвуковым повсюду. Ряд картин течения из трансзвукового диапазона приведен на рис. 14. Отличительной особенностью таких течений является наличие дозвуковых и сверхзвуковых областей потока, т.е. если скорость набегающего потока лишь немного меньше дозвуковой, то около тела появляются области течения со сверхзвуковыми скоростями, а если набегающий поток слегка сверхзвуковой, то существуют области течения с дозвуковыми скоростями. Такой «смешанный» характер течения создает существенные трудности для их теоретического исследования и систематизации данных об аэродинамических характеристиках тел в этом диапазоне скоростей. Ударные волны, показанные на рис. 14, создают относительно большое волновое сопротивление. Вследствие этого, а также из-за того, что при трансзвуковых скоростях часто возникают опасные колебания некоторых элементов самолета, летчики предпочитают летать либо при дозвуковой, либо при сверхзвуковой скорости. Трансзвуковой рост сопротивления крыла иллюстрирует кривая, приведенная на рис. 15. Экспериментальные исследования в трансзвуковом диапазоне осложняются тем, что в этом диапазоне скоростей относительно небольшие изменения чисел Рейнольдса и Маха оказывают значительное влияние на аэродинамические характеристики.

 Рис. 14. СХЕМЫ ТЕЧЕНИЙ около крыла при различных скоростях трансзвукового диапазона. Левые рисунки соответствуют дозвуковой скорости набегающего потока, при возрастании которой увеличивается протяженность области сверхзвукового течения около крыла. Справа показаны схемы течений при сверхзвуковой скорости набегающего потока, когда около крыла образуются области дозвукового течения.  Рис. 15. КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ имеет максимум в трансзвуковом диапазоне. По этой причине, а также вследствие потери управляемости летчики предпочитают летать на дозвуковых или сверхзвуковых скоростях.

В сверхзвуковом диапазоне течение на всей поверхности тела, за исключением небольших участков вблизи передней кромки, является сверхзвуковым; рассчитать аэродинамические характеристики в этом диапазоне намного проще, чем в любом другом диапазоне скоростей. Приближенные формулы для вычисления коэффициентов подъемной силы и силы сопротивления тонкого крыла здесь имеют вид

В последней формуле величина t/c есть отношение толщины t к хорде крыла c. Эта формула показывает, что крыло сверхзвукового самолета должно быть тонким, а из соображений прочности следует, что оно должно иметь относительно небольшой размах. Это одна из важнейших причин, по которой на сверхзвуковых самолетах используют крылья малого удлинения.

Гиперзвуковое течение отличается от сверхзвукового в двух аспектах, каждый из которых проявляется постепенно по мере увеличения числа Маха. Во-первых, при числах Маха свыше 8 возмущения, генерируемые даже тонкими телами, становятся сильными ударными волнами. Поэтому изменения плотности и давления в них не подчиняются законам, справедливым для более слабых волн Маха, генерируемых при более низких сверхзвуковых скоростях. Следовательно, формулы для определения подъемной силы и силы сопротивления крыла в гиперзвуковом потоке должны отличаться от соответствующих формул для сверхзвуковых течений. Конкретный вид этих формул зависит от формы крыла в плане и формы поперечного сечения, однако в гиперзвуковом течении коэффициент CY пропорционален a2, а – комбинации (t/c)3 и a3. Один из методов нахождения распределения давления на телах, движущихся с гиперзвуковыми скоростями, описывается ниже в связи с проблемой полета на больших высотах. Второй, более существенной особенностью гиперзвукового течения является сильное аэродинамическое нагревание поверхности тела.



Источник: http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/AERODINAMIKA.html?page=0,6
Категория: Термины и определения | Добавил: Komocki (22.06.2012)
Просмотров: 715 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
ФЕСТИВАЛЬ
ОНИ С НАМИ
Поиск