ВОЗДУХОПЛАВАНИЕ
Форма входа
Категории раздела
Термины и определения [29]
Прогноз погоды [26]
Конструкция и ТХ аэростатов [15]
Статистика

Онлайн всего: 1
Гостей: 1
Воздухоплавателей: 0
Пятница, 27.12.2024, 16:39
Приветствую Вас Автопилот

Каталог статей

Главная » Статьи » Учимся летать на Тепловом аэростате. » Термины и определения

Стратосфера

Подготовил Малахов О.
Опубликовано 16-01-2010

Выше тропопаузы до высоты 50 – 60 км расположен слой атмосферы, называемый стратосферой, главной особенностью которой является рост температуры с высотой. В нижней части стратосферы до высоты порядка 25 км температура постоянна или медленно растет с высотой. Стоит отметить, что в зимние месяцы в высоких широтах она даже может слабо падать. Но с высоты 34 – 36 км температура начинает расти быстрее. Это возрастание продолжается до верхней границы стратосферы, именуемой стратопаузой. Здесь стратосфера почти такая же теплая, как и воздух у поверхности Земли.

Возрастание температуры с высотой приводит к большой устойчивости стратосферы: здесь нет упорядоченных (конвективных) вертикальных движений воздуха и его активного перемешивания, что свойственно для тропосферы. Однако очень небольшие по величине вертикальные движения типа медленного оседания или подъема иногда охватывают слои стратосферы, занимающие огромные пространства.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 22 – 24 км в высоких широтах иногда наблюдаются перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются Солнцем, находящимся под горизонтом. Считается, что эти облака состоят из переохлажденных капель.

Состав воздуха в стратосфере практически такой же, как и в тропосфере, но есть отличие. В стратосфере наблюдается повышенное содержание озона – неустойчивого газа, молекула которого состоит из трех атомов кислорода. Озоновый слой сформировался и поддерживается взаимодействием ультрафиолетового излучения Солнца с молекулами обычного кислорода и служит надежным экраном на пути этого губительного для всего живого излучения. Из-за наличия слоя озона в стратосфере она может быть также названа озоносферой.

…Когда-то обнаруженное в тропосфере падение температуры с высотой ошибочно считалось свойством всей атмосферы, что объяснялось удалением от нагреваемой Солнцем земной поверхности. Но первые же подъемы шаров-зондов с инструментами на борту дали неожиданные данные. Оказалось, что температура понижается примерно до высоты 10 км, после чего она практически не меняется, а затем начинает даже несколько повышаться. Эти данные шли вразрез с установившимися представлениями о вертикальном изменении температуры в атмосфере. Приборы перед запусками шаров-зондов стали проверять более тщательно, практиковались также ночные запуски, исключающие нагрев приборов Солнцем. Однако все новые и новые пуски приносили одни и те же данные о том, что падение температуры с высотой прекращается. В результате пришлось согласиться с тем фактом, что законы, действующие в нижней части атмосферы, перестают работать выше определенной высоты. Таким образом, атмосферу впервые поделили на слои. Тот слой, в котором температура с высотой понижается, назвали тропосферой, а слой атмосферы, в котором температура переставала понижаться с высотой – стратосферой. Учитывая то, что шары-зонды имели значительные ограничения по высоте подъема, они не могли достичь следующего слоя атмосферы – мезосферы, в которой температура снова начинает понижаться по мере подъема. В результате стратосферой стали считать всю верхнюю атмосферу.

Стоит отметить, что переход от тропосферы к стратосфере не происходит резко. Между ними лежит промежуточный слой, толщиной до нескольких километров, в котором прекращается падение температуры с высотой и начинается слой изотермии. Этот слой называется тропопаузой.

Причину роста температуры в стратосфере обнаружили не сразу. Им оказался обнаруженный еще в 1785 году газ, получивший в 1840 году название – озон. В результате поглощения солнечной энергии, происходящей уже в верхней части слоя озона, температура атмосферы на этих высотах повышается, и слой озона является своего рода резервуаром тепла в атмосфере. Содержание озона в нижних слоях атмосферы (до высоты 10 км) ничтожно. А его набольшее содержание приходится на высоты 20 – 25 км. Молекулы озона не встречаются на высотах более 60 км. Данные о содержании озона на высотах получали весьма интересным способом: на шаре-зонде или метеорологической ракете устанавливался спектрограф, регистрирующий спектр Солнца. Известно, что при наблюдениях с поверхности Земли спектр Солнца обрывается в ультрафиолетовой части. Когда стало ясно, что это связано с поглощением озоном солнечного ультрафиолета, логичным методом оценки содержания озона на высотах стали запуски зондов и ракет со спектрографами на борту.

Повышение температуры в стратосфере начинается примерно от 30 км и продолжается до 40 – 50 км, где находится верхняя часть озонного слоя. Несмотря на то, что озона здесь меньше, чем на более низких уровнях, именно эта часть слоя обращена к Солнцу и нагревается сильнее поглощаемыми ею ультрафиолетовыми лучами.

Установленное по результатам зондирования повышение температуры на высоте около 40 – 50 км было подтверждено в 1920 году, когда 9 мая в Москве произошел сильный взрыв артиллерийских складов. Звук от взрыва был хорошо слышен вблизи Москвы – на расстоянии до 60 км, а затем снова на большом расстоянии в пунктах, расположенных кольцом вокруг города. Между этими двумя зонами слышимости имелась «зона молчания» шириной в 100 км, где взрыв совсем не был слышен. Профессор В.И. Виткевич исследовал это явление и пришел к выводу, что такое распределение слышимости звука может наблюдаться при условии его отражения от слоев атмосферы, распложенных на высоте 40 – 50 км. Но при этом температура отражающих слоев должна быть около плюс 40 – 50 градусов.

Мы уже упоминали о важной роли озонового слоя в сохранении жизни на Земле. Но в 1985 году ученые обнародовали сенсационное известие: над Антарктидой обнаружена озоновая дыра диаметром свыше 1000 км! Ежегодно она появлялась здесь в августе, а к декабрю – январю прекращался свое существование. Меньших размеров озоновая дыра была обнаружена и над Арктикой. Стоит отметить, что изменения озонового слоя, его уменьшение, вызвано не только влиянием антропогенных факторов. Существующие естественные изменения волновой активности и динамики стратосферы значительно влияют на вариации озона во времени. Межгодовые вариации общего содержания озона (ОСО) в глобальном масштабе являются индикаторами изменений климата. Например, заметное уменьшение содержания озона в период между 1979 – 1994 гг. над Западной Европой, Восточной Сибирью и востоком США связаны с потеплением климата в этих районах, в увеличение содержания озона в области Лабрадора – с похолоданием в Гренландии и Западной Атлантике.

Существуют также связи между вариациями ОСО в одних географических районах и приземными температурными аномалиями – в других. Например, анализ межгодовых вариаций ОСО в январе и приземной температуры в феврале 1979 – 1994 гг. показал, что для того, чтобы предсказать какая погода (холодная или теплая) будет в феврале в Западной Сибири, нужно смотреть на содержание озона в точке к западу от Англии (50° с.ш., 10° з.д.).

Первые подъемы шаров-зондов до достигавшейся ими предельной высоты опказали, что общий ход температуры выше тропопаузы был достаточно постоянным. Отсюда был сделан вывод о том, что на этих высотах отсутствует (или почти отсутствует) вертикальное перемешивание воздуха. Более поздние высокие радиозондовые подъемы позволили обнаружить значительные сезонные (муссонные) изменения градиента температуры экватор – полюс и связанные с ними изменения режима давления и ветра. Другое важное открытие связано с обнаруженным в стратосфере, прежде всего в зимней стратосфере, значительные внутрисезонные изменения температуры, ветра и содержания озона. Особенно ярко эти внутрисезонные изменения проявляются в так называемых взрывных потеплениях в стратосфере высоких широт.

Первые важные данные о ветрах в нижней стратосфере в ее экваториальной части дало извержение вулкана Кракатао 27 августа 1883г., в результате которого в атмосферу было выброшено огромное количество вулканической пыли. Это обстоятельство позволило получить начальные сведения о некоторых особенностях стратосферы низких широт.

Движение вулканической пыли показало, что в экваториальной зоне не только на уровне моря, но и в нижней стратосфере зональная составляющая ветра направлена с востока на запад, причем скорость этих восточных потоков в нижней стратосфере достигает значительных величин (25 – 50 м/сек). Эти стратосферные восточные ветры получили название ветров Кракатао. Ветры Кракатао огибают весь земной шар в экваториальных (15° с.ш. – 15° ю.ш.) широтах на высотах 25 – 40 км.

В 1909 году экспедицией Ван-Берсона в Центральной Африке впервые были обнаружены западные ветры в тропической стратосфере. Последующие наблюдения показали как наличие восточных ветров Кракатао в тропической стратосфере, так и появление под ними западных ветров Берсона. Западные ветры Берсона также были обнаружены при серии атомных испытаний на Маршалловых островах. Последующие исследования показали, что ветры в нижней тропической стратосфере меняют направление между восточным и западным с периодом около 26 – 27 месяцев. Так была установлена квазидвухлетняя цикличность, когда в слое тропической стратосферы от 18 – 20 км до 35 км в течение примерно одного года господствуют ветры восточных направлений, а в течение следующего года – западных. Квазидвухлетняя цикличность особенно отчетливо выражена в зоне 8 – 10° по обе стороны от экватора и имеет наибольшую амплитуду на уровне около 23 км, где средняя продолжительность цикла составляет около 26 месяцев. Каждый из зональных переносов появляется раньше всего в верхних слоях, на уровне около 35 км, и постепенно со скоростью 1 – 1,5 км в месяц распространяется вниз.

В верхней тропической стратосфере позднее была обнаружена шестимесячная цикличность, которая находится в определенной связи с двухлетней.

Новейшие исследования стратосферы, как было отмечено выше, обнаруживают значительную взаимосвязь между ней и тропосферой. Например, некоторые работы показали, что распространение климатического сигнала из тропосферы в стратосферу происходит довольно быстро – в течение 3 – 10 суток. После этого в стратосфере аномальный сигнал существует намного дольше (15 – 40 суток), что дает основания для долгосрочного прогноза погоды по параметрам стратосферы.

Литература:
П.Н. Тверской. Курс метеорологии. Гидрометеоиздат, 1962.
Атмосфера Земли. Сборник. Москва, 1953.
А.Л. Кац. Циркуляция в стратосфере и мезосфере. Гидрометеоиздат, 1968.
Использованы также материалы журналов «Метеорология и гидрология» и «Наука и жизнь».

Ссылки:

Режим ветра в экваториальной стратосфере. Квазидвухлетняя цикличность (КДЦ)
Стратосфера и ее связь с тропосферой. Часть вторая. Стратосферные потепления.
Стратосфера и ее связь с тропосферой. Часть первая.
Об истории исследования верхних слоев атмосферы Земли
Строение атмосферы Земли


Источник: http://meteoweb.ru/2010/phen066.php
Категория: Термины и определения | Добавил: Komocki (25.06.2012)
Просмотров: 2181 | Комментарии: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
ФЕСТИВАЛЬ
ОНИ С НАМИ
Поиск